ME 503 TENTATIVE LECTURE OUTLINE—Spring 2014

Date	Lecture Topic	Reading Due	Assignments Due
Week 1:			
Jan. 14	Course introduction; conservation laws;	A&L	
(T.)	fundamentals	Ch. 1.1-1.5	
Jan. 16	Course introduction; conservation laws;	A&L	
(R.)	equations	Ch. 2.1-2.4	
Week 2:			
Jan. 21	Parallel flows-I; steady and unsteady	A&L	HW 1 Assigned
(T.)	Poiseuille flow	Ch. 3.1	
Jan. 23	Parallel flows-II; steady and unsteady	A&L	
(R.)	Couette flow	Ch. 3.2	
Week 3:			
Jan. 28	Parallel flows-III; dissipation	A&L	HW 2 Assigned
(T.)	effect; buoyancy-driven flows	Ch. 3.3-3.4	HW 1 Due
Jan. 30	Parallel flows-IV; thermal boundary layers;	A&L	
(R.)	fully developed heat transfer	Ch. 3.5-3.6	
Week 4:		T	
Feb. 4	Nearly parallel (boundary layer) flows-l;	A&L	HW 3 Assigned
(1.)	principals	Ch. 4.1	HW 2 Due
Feb. 6	Nearly parallel (boundary layer) flows-I;	A&L	
(R.)	conservation equations	Ch. 4.1	
Week 5:			
Feb. 11	Nearly parallel (boundary layer) flows-II;	A&L	HW 4 Assigned
(T.)	momentum and thermal boundary layers	Ch4.3	HW 3 Due
Feb. 13	Similarity transformation-I; principals	A&L	
(R.)		Ch. 5.1	
Week 6:			
Feb. 18	Similarity transformation-II;	A&L	HW 5 Assigned
(T.)	example problems	Ch. 5.2	HW 4 Due
Feb. 20	In-Class Exam-I		
(R.)			
Week 7:			
Feb. 25	Similarity solutions-III; fundamentals of	A&L	HW 6 Assigned
(1.)	heat transfer correlations	Ch. 5.3-5.4	HW 5 Due
Feb. 27	Similarity solutions-1V; fundamentals of	A&L	
(K.)	neat transfer correlations-Continued	Cn. 5.3-5.4	
Week 8:	The second discourse the second second second	A 0 T	
$\operatorname{Mar} 4$	Time periodic convection; principals	$A \propto L;$	HW / Assigned
(1.) Mar 6	Time pariodic convection.	Δ1. 0.1-0.3 Δ l-I ·	
(\mathbf{R})	example problems	$\Gamma_{\rm ALL}$	
		CII. 0.2	
Week 9:			
Mar 11	Spring Break		
(1.)			
Mar 13	Spring Break		
(K.)			
ууеек 10:	Trade last come the sector 1	A 9 T	
Iviar 18	i urbuient convection; principals	A&L	nvv / Assigned

(T.)		Ch. 8.1	HW 6 Due
Mar 20	Turbulent convection: governing equations	A&L:	
(R.)		Ch. 8.2-8.7	
(20)			
Week 11:			
Mar 25	Turbulent convection; scaling laws	A&L	HW 8 Assigned
(T.)	, 0	Ch. 9.1-9.2	HW 7 Due
Mar 27	Turbulent convection; heat transfer	A&L	
(R.)	correlations-I	Ch. 9.3-9.4	
Week 12:			
April 1	Turbulent convection; heat transfer	A&L	HW 9 Assigned
(T.)	correlations-II	Ch. 9.5-9.6	HW 8 Due
April 3	In-Class Exam-II		
(R.)			
Week 13:			
April 8	Natural convection; principals	From handout	HW 10 Assigned
(T.)			HW 9 Due
April 10	Natural convection; governing equations;	From handout	
(R.)			
Week 14:			
April 15	Natural convection; scaling laws-I	From handout	HW 11 Assigned
(T.)			HW 10 Due
April 17	Natural convection; scaling laws-II	From handout	
(R.)			
Week 15:			
April 22	Dimensional Analysis ; principals	A&L	HW 12 Assigned
(T.)		Ch. 12.1	HW 11 Due
April 24	Dimensional Analysis ; similitude	A&L	
(R.)	, , , , , , , , , , , , , , , , , , ,	Ch. 12.2	
Week 16:			
April 29	Dimensional Analysis ; example	A&L	HW 13 Assigned
(T.)	<i>J i</i> 1	Ch. 12.3-12.4	HW 12 Due
May 1	Review & catch up		
(R.)	*		

Final Exam: Thursday, May 8, 3:10am-6:10 pm

Course Description: ME503 (Convective Heat Transfer) is a course that deals with laminar and turbulent forced convection heat transfer over surfaces and inside tubes, including non-circular cross sections. The course also comprises developing flows, laminar free convection, and time periodic flows. Emphasis throughout is on the analytical approach.

Emergency Procedures: Southern Illinois University, Carbondale is committed to providing a safe and health environment for study and work. Because some health and safety circumstances are beyond our control, we ask that you become familiar with the SIUC Emergency Response Plan and Building Emergency Response Team (BERT) program. Emergency response information is available on posters in buildings on campus, available on BERT's website at <u>www.bert.siu.edu</u>, Department of Safety's website <u>www.dps.siu.edu</u> (disaster drop down), and in the Emergency Response Guideline pamphlet. Know how to respond to each type of emergency.

Instructors will provide guidance and direction to students in the classroom in the event of an emergency affecting your location. It is important that you follow these instructions and stay with your instructor during an evacuation or sheltering emergency. The Building Emergency Response Team will provide assistance to your instructor in evacuating the building or sheltering within the facility.