ET 332a
Dc Motors, Generators and Energy Conversion Devices

Instructor: Dr. Carl Spezia, PE

Office: Engr. D110
Phone: 453-7839
E-mail: powerguy@siu.edu

Office Hours: 10:00 am - 10:50 am M-W-F
2:00 pm - 3:00 pm M-W-F
or by appointment

References: Electric Machinery and Transformers, Irving L. Kosow
Energy Science Principles, Technologies, and Impacts, John Andrews and Nick Jelley

Grading Scale: 100-90% A
89-80% B
79-70% C
69-60% D
59-below F

Hour Exams (3 at 100 points each) 45%
Final Exam (200 points) 20%
Online Lesson Quizzes 10%
Homework (submitted electronically) 5%
Laboratory Experiments/Activities 20%

Total 100%

Note: the final exam is optional for all students that have a 90% or higher average on the hour exams, quizzes, homework, and experiment/activities
ET 332a
Dc Motors, Generators and Energy Conversion Devices

Course Policies
1. Late Work, Makeup Exams, Electronic Submission Requirements
 No make-up exams. All homework handed in electronically in Desire-2-Learn prior to the due date/time. No late homework accepted. Lab reports submitted electronically in Desire-2-Learn. Submit all homework and lab assignments by scanning your work into a pdf format file. DO NOT take pictures of the pages using a camera or submit any other file format. The online course materials give a link to a cell phone app that scans written work into pdf files. The course instructor will not grade work submitted in an incorrect format. Late lab grades reduced by 5% per working day starting from due date.

2. Attendance Policies
 Class attendance is required and attendance will be taken at the beginning of every period. Students are allowed four unexcused absences. Any further absences will reduce the TOTAL grade by 0.25% per day absent.

3. Cell Phone/Electronic Device Usage
 Cell phone usage during meeting periods is prohibited. Devices should be TURNED OFF prior to entering class. Other electronics devices (Tablets, iPads, Readers etc) are only allowed for academic/research purposes. No electronic devices other than calculators are allowed during exams. Those violating this policy are subject to disciplinary action under the Student Conduct Code. Follow this link to review this code: http://policies.siuc.edu/policies/conduct.html

4. Nicotine Consumption

Final Exam Scheduling Policy

The course final exam is comprehensive. The course instructor will give the exam during finals week at the time and place prescribed by the University in its final exam schedule. The University final exam schedule, which you can find on Salukinet, gives the date and time for this course final exam. The course instructor will also announce this time and date of the exam in the class several times before semester end. The final will take place in the normal lecture room.

Course Description and Prerequisites

This course is introduces the theory and operation of DC machines with an emphasis on the testing and measurement of machine characteristics and parameters. The course introduces the science, application, and economics of renewable DC power using photocells. Laboratory exercises will demonstrate the theoretical concepts and give experience using various types of measurement devices and software.

Prerequisite: Engineering Technology 304a or concurrent enrollment
Course Content Overview

This course will examine the theory and operation of DC machines. DC machines are energy conversion devices that can operate as either motors or generators. This course will cover the theory and operation of these machines. Circuit models and mathematical formulas will describe their operation. The course develops torque-speed and voltage-load characteristics of common types of DC machines. The course introduces simple protection and control schemes. The course content will emphasize machine efficiency and proper motor application. Photocell arrays are a source of dc power. This course introduces the science and application of photovoltaic devices. Simple economic comparisons highlight the cost of solar energy when compared to grid-supplied electricity. The measurement and test of machine characteristics will be carried out in laboratory experiments. Software packages will be used to eliminate tedious calculations and speed data acquisition.

Course Objectives

At the end of this course, you will be able to:

1.) Explain how electromagnetism can transfer electric energy to mechanical energy.
2.) Use the basic principles of physics to describe simple linear and rotational motion.
3.) Determine the torque-speed relationships for typical mechanical loads.
4.) Explain the key parts of magnetic circuits and perform basic magnetic circuit calculations.
5.) List the sources of power loss in magnetic circuits.
6.) Explain how electromagnetic forces produce motor action.
7.) Explain how electromagnetic induction produces generator voltage.
8.) Explain how elementary dc machines generate voltage.
9.) Define commutation in dc machines and list factors that affect it.
10.) List the parts of a practical dc machine.
11.) Use the model of separately excited dc generator to perform electrical calculations.
12.) Determine the voltage regulation of a dc generator.
13.) Explain how torque a separately excited dc motor develops torque.
14.) Use the equivalent circuit model of the separately excited dc motor to perform calculations.
15.) Explain the operation of a shunt connected dc motor and use an equivalent circuit model to perform calculations.
16.) Determine the losses and efficiency of a dc motor.
17.) Interpret NEMA ratings.
18.) Read basic motor control ladder diagrams.
19.) Interpret standard motor/generator terminal markings.
20.) List dc motor starting methods.
21.) Compare and contrast the torque speed characteristics of separately excited, shunt, series, and compound connected dc motors.
22.) Calculate speed regulation of a dc motor.
23.) Calculate motor performance when magnetic circuits saturate.
24.) Explain how photocells convert light into electric current.
25.) Compute photocell voltage, current, and efficiency.
26.) Draw and perform calculations with a solar cell circuit model.
27.) Find the maximum power transfer of a solar cell.
28.) Analyze the economics of owning a solar panel.

Others Helpful Information

All members of the faculty and staff of SIUC are here to help you as you begin this course and all others on your schedule this semester. Attached to this syllabus is a summary sheet that includes all the important dates and other valuable information to help you succeed during your academic career at SIUC. Please feel free to communicate with the course instructor and any other staff of the Department of Technology if you have any problems and concerns. Good luck this semester.
ET 332a
Dc Motors, Generators and Energy Conversion Devices
Course Outline

Fundamentals of Electricity
Concept of energy conversion
Conventional currents.
Source and load power conventions.

Magnetic Circuits
Magnetic fields
Magnetic circuits
Magnetic circuit equations
B-H curves of non-magnetic materials
B-H curves of magnetic materials
Electric and magnetic circuit analogies
Solving Magnetic circuits
Magnetic losses

Review of Basic Mechanics
Physics of mechanical motion, force, torque, transformation of energy.
Torque-speed relationships for mechanical loads

Elementary Dc Machines
Electromagnetic forces on conductors
Motor action
Electromagnetic induction
Generator action
Generated voltage in elementary dc machines
Commutation process
resistive commutation
inductive effects
armature reaction
brush shifting

TEST 1
ET 332a
Dc Motors, Generators and Energy Conversion Devices
Course Outline

Construction of dc machines
Separately excited dc generator
Equivalent circuit
Voltage regulation
Motor-generator operation
Developed torque
Separately excited dc motors
Equivalent Circuit
Basic shunt motor operation
 Equivalent circuit
 dynamic operation
 speed regulation
Speed equations
Torque and power
Losses and efficiency
 Class notes
NEMA ratings
Ladder diagrams
DC motor starting
Step Resistor Starting

DC Motor Characteristics
 Chapter 11
Shunt motors
Compound motors
Differential Compound motors
Series motors
Saturation effects
Linear approximations
Characteristics compared
Control
 Variable voltage drive systems
 Dynamic braking
 Plugging/Jogging

Standard terminal markings and connections

TEST 2

Control of Dc Machines
 Chapter 13
Control Components
 Sections 13-1 to 13-5, 13-9 to 13-15
ET 332a
Dc Motors, Generators and Energy Conversion Devices
Course Outline

Control diagram conventions
Overload protection
Short circuit protection
Auto shutdown for power failure
Reversing starters with braking

Self-Excited Dc Generators
Voltage Build-up
Basic Design
Load Voltage Characteristic
Graphical Solutions
Compound Generators

Class notes
Chapter 12
Sections 12-1 to 12-9

Renewable dc Power Sources
Solar energy
Solar intensity
Conductors, insulators, and semiconductors
PN junction
Photo-electric effect
Solar cell electrical characteristics
Circuit model of solar cells
Cell efficiency
Solar panels
Economics of solar power

Class notes
Handouts

TEST 3
Final Review

Final Exam
ET 332A
Homework Listing

<table>
<thead>
<tr>
<th>Assignment #</th>
<th>Lesson#</th>
<th>Problems</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1-1/4, 1-2/4</td>
<td>Chapter 1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1-4/5, 1-5/5</td>
<td>Chapter 1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1-7/5</td>
<td>Chapter 1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>hw1.wp5</td>
<td>handout</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>hw2.wp5, hw3.wp5</td>
<td>handout</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>1-10/6</td>
<td>Chapter 1</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>1-11/7, 1-12/7</td>
<td>Chapter 1</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>hw4.wp5, hw4a.wp5</td>
<td>handout</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>10-1/2, 10-2/2</td>
<td>Chapter 10</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>10-3/7, 10-4/7</td>
<td>Chapter 10</td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td>10-5/7, 10-6/7</td>
<td>Chapter 10</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td>sepmtor.wp5</td>
<td>handout</td>
</tr>
<tr>
<td>13</td>
<td>11</td>
<td>hw5.wp5, hw6.wp5</td>
<td>handout</td>
</tr>
<tr>
<td>14</td>
<td>11</td>
<td>10-9/12</td>
<td>Chapter 10</td>
</tr>
<tr>
<td>15</td>
<td>12</td>
<td>10-8/12</td>
<td>Chapter 10</td>
</tr>
<tr>
<td>16</td>
<td>13</td>
<td>10-19/22<sup>1</sup></td>
<td>Chapter 10</td>
</tr>
<tr>
<td>17</td>
<td>13</td>
<td>hw7.wp5</td>
<td>handout</td>
</tr>
<tr>
<td>18</td>
<td>14</td>
<td>hw8.wp5, 10-25/26<sup>2</sup></td>
<td>handout/Chapter 10</td>
</tr>
<tr>
<td>19</td>
<td>16</td>
<td>hw9.wp5</td>
<td>handout</td>
</tr>
<tr>
<td>20</td>
<td>16</td>
<td>10-27/27, 10-21/25</td>
<td>Chapter 10</td>
</tr>
<tr>
<td>21</td>
<td>18</td>
<td>hw10.wp5</td>
<td>handout</td>
</tr>
<tr>
<td>22</td>
<td>19</td>
<td>11-1/7</td>
<td>Chapter 11</td>
</tr>
<tr>
<td>23</td>
<td>20</td>
<td>11-11/7</td>
<td>Chapter 11</td>
</tr>
<tr>
<td>24</td>
<td>20</td>
<td>11-10/7</td>
<td>Chapter 11</td>
</tr>
<tr>
<td>25</td>
<td>21</td>
<td>Short Answer Questions 12, 13</td>
<td>Chapter 11</td>
</tr>
<tr>
<td>26</td>
<td>23</td>
<td>6.1, 6.2</td>
<td>PV handout</td>
</tr>
<tr>
<td>27</td>
<td>24</td>
<td>6.6, 6.8<sup>3</sup></td>
<td>PV handout</td>
</tr>
<tr>
<td>28</td>
<td>25</td>
<td>6.9 6.11</td>
<td>PV handout</td>
</tr>
</tbody>
</table>

¹The value of the resistor in part a is incorrect. Use a value of 0.052 ohms.
²The answers in the back of the book are incorrect. Use a.) 1705.2 W b.) 3270.8 W c.) 93.8%
³Use the equations in Example 6-4 from the handout readings to find maximum voltage and current
Sample Homework Format

Always use engineering paper unless otherwise instructed. Included problem numbers.

1. Transcribe all key values here with units:
 - \(R_1 = 10 \Omega \)
 - \(V = 100 \text{V} \)
 - \(I = 3 \text{A} \)

2. Include sketches, schematics, with values if useful.

3. Label subsections of problem.

Include enough work so that the grader can follow logic.

Answers with no support or invalid support receive no credit.

\[E_a = V_T - I_a R_a \]
\[E_a = 120\text{V} - (3\text{A})(0.15\Omega) \]
\[E_a = 119.2\text{V} \]

Box final answer.

Staple multiple pages. Unstapled work not accepted.

Pencil is better than ink for problem solutions.

Organize work in logical way. This helps graders follow work and promotes maximum points for partial credit.

Use lecture examples as guides for proper layout.
ET 332a
Laboratory Activities and Experiments

1.) **Using Spreadsheets in Laboratory Calculations**
 (Handouts)
The Excel spreadsheet is introduced and used to produce graphs that are commonly found in technical reports. Linear graphs are produced. Semi-log plots are created by using a log function to reduce the range of the data and by using the scaling abilities of the spreadsheet. Embedding the results into reports is also demonstrated. The Microsoft Equation Editor is demonstrated. A student activity uses the developed skills to make plots and produce professional solutions to technical problems.

2.) **Power Laboratory Safety and Work Procedures/Resistance of DC machines**
 (Hampden Experiment 1)
Students are instructed in high voltage laboratory safety rules. Avoiding electric shock and other safety hazards encountered in the power lab are covered. The basic operation of the fractional-horsepower motor lab equipment will be covered. The class will perform a simple experiment to determine the dc resistance of the field and armature coils of a typical dc motor.

3.) **Saturation Curve of a Generator**
 (Hampden Experiment 2)
The main object of this lab is to obtain the necessary data to plot a saturation curve of a separately excited dc generator. The shape of this curve is a scaled representation of a machine’s B-H curve. The effects of saturation on the output of a generator are observed.

4.) **Counter EMF Force**
 (Hampden Experiment 16)
The counter EMF force of a dc machine will be observed. The laws of induction and force on a conductor will be verified using a dc machine.

5.) **Load Characteristics of a Separately-Excited Shunt Generator**
 (Hampden Experiment 6)
The load level Vs terminal voltage characteristic of a separately-excited shunt generator is developed. The voltage output capabilities of the machine are examined at the rated speed and field current of the device.
6.) **Shunt Motor Characteristics**
(Hampden Experiment 18)
The speed-torque characteristic of the shunt dc motor is determined experimentally. The speed regulation of the machine will be found. The relationship between the load torque and the armature current is examined.

7.) **Efficiency and Losses in a Dc Shunt Motor**
(Hampden Experiment 21)
The operating efficiency of a shunt dc machine will be determined by lab tests. The sources of losses in dc machines are identified and measured. These losses can be divided into fixed and load-variable components.

8.) **Series Motor Characteristics**
(Hampden Experiment 19)
The speed-torque characteristic of the series dc motor is determined experimentally. The speed regulation of the machine will be found. The relationship between the load torque and the armature current is examined.

9.) **Compound Motor Characteristics**
(Hampden Experiment 20)
The speed-torque characteristic of the compound dc motor is determined experimentally. The speed regulation of the machine will be found. The relationship between the load torque and the armature current is examined.

10.) **Shunt Generator Output Polarity and Voltage Build-up**
(Hampden Experiment 3)
This experiment covers the correct procedures for preparing a shunt generator to for operation. The voltage build-up process is examined. The proper connections for voltage build-up are given.

11.) **Field Resistance Vs Generator Voltage Build-up/Motor Control Simulator**
(Hampden Experiment 4)
This lab examines the affects of field resistance on generator voltage build-up. The lab demonstrates the effect of excessive field resistance on terminal voltage. The second section introduces ladder diagrams and motor control with an animated, computer-based simulator.

12.) **PV Array Economics Report**

Students survey the Web and other technical resources to determine the cost and feasibility of utilizing solar power in a grid-tied residential application. A short report summarizes the findings.
Lab Reporting Format

The laboratory procedure will be handed out approximately a week before it will be performed. Reading the lab prior to lab makes the performance of the experiment more efficient. All data collected in lab must be initialed and dated by the lab instructor. All reports submitted without instructor verification will receive a zero.

The experiments for this course will be reported in an abbreviated format. The laboratory handout has an experiment objective and procedure included. There is no need to restate these sections in another report. To fully document the results of the experiment, all questions, problems and graphs required by the laboratory handout must be completed. Also, a discussion of the topics covered in the experiment and how they relate to the lecture material should be completed. This discussion should be at least one page type written and double-spaced.

The report should have the following sections:

1.) Cover page that is like the one attached to this document
2.) All the pages from the laboratory handout that have questions, problems, tables, graphs.
3.) Discussion

It is permissible to answer the questions/problems on a separate sheet, but the questions and problems must be numbered and all the answers typed. Some of the lab handouts have places to make graph in them. It is also permissible make graphs using software packages such as Excel instead of using this page. If a graph is made on a separate sheet it must have:

1.) A title
2.) Labels on each axis
3.) Units on each axis
4.) A legend if more than one curve is on the same axis. This identifies each curve on the graph.

The graphs should be scaled to show the data in the most meaningful way. Change the graph limits so the curve covers most of the axis.

Hints for Good Reports

1.) Follow the format. If you are not sure about how something should be done, ask the lab or lecture instructor.
2.) Use computer tools whenever possible. (Word processors, drawing tools, spreadsheets) If you have never had any experience with some of these tools or have a question about how to perform a function using the common software tools ask the lab or lecture instructor.
3.) Spell-check the document.
4.) Proof-read the document at least once.
<table>
<thead>
<tr>
<th>Lesson Number</th>
<th>Title</th>
<th>Lab Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introductory Concepts</td>
<td>Lab 1 Using Spreadsheets</td>
</tr>
<tr>
<td>2</td>
<td>Magnetic Circuits-Quantities and Definitions</td>
<td>Lab 2 Safety/Dc Coil Resistance</td>
</tr>
<tr>
<td>3</td>
<td>Solving Magnetic Circuits</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Solving Magnetic Circuits with Electrical Analogies</td>
<td>Lab 3 Saturation Curve of Gen</td>
</tr>
<tr>
<td>5</td>
<td>Mechanics for Motors and Generators</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Electromagnetic Induction and Magnetic Forces</td>
<td>Lab 4: Counter EMF</td>
</tr>
<tr>
<td>7</td>
<td>Construction of Elementary Dc Generators</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Induced Voltage in Practical dc Machines</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Power Balance and Efficiency in Dc Generators</td>
<td>Lab 5: Shunt Generator Loads</td>
</tr>
<tr>
<td>10</td>
<td>Separately Excited Dc Motors</td>
<td>Lab 6: Shunt Motor</td>
</tr>
<tr>
<td>11</td>
<td>Separately Excited Motor Examples</td>
<td>Lab 7: Shunt Motor Efficiency</td>
</tr>
<tr>
<td>12</td>
<td>Shunt Connected Dc motors</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Shunt Connected Dc Motor Examples</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Starting Dc Motors</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Dc Motor Control Components and Diagrams</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Computing Resistive Starter Values</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Other Dc Motor Connections</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Series Motor Torque-Speed Characteristics</td>
<td>Lab 8: Series Motor</td>
</tr>
<tr>
<td>19</td>
<td>Non-Linear Operation of Dc Motors</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Non-Linear Operation of Compound motors</td>
<td>Lab 9: Compound Motor</td>
</tr>
<tr>
<td>21</td>
<td>Operation and Control of Dc Motors</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Self-Excited Dc Generators</td>
<td>Lab 10: Shunt Generator I & II</td>
</tr>
<tr>
<td>23</td>
<td>Introduction to Solar Energy and Photo Cells</td>
<td>Lab 11: PV Economics Report</td>
</tr>
<tr>
<td>24</td>
<td>Photocell Electrical Characteristic and Circuit Model</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Solar Panels and Economics of Solar Power</td>
<td></td>
</tr>
</tbody>
</table>
ET 332
Lab Report Grading and Attendance Policies

Grading

The following table shows the point distribution and items that will be graded in the ET 332 lab report. If all listed items are included and correct, then the maximum grade is received.

Only include the pages from the lab handout that show data and have answers to questions. This includes both the De-Briefing and Quick Quiz sections. All graphs should be generated using a computer program such as Excel. Include the graphs required by the lab procedures and any additional ones specified by the lab instructor.

Late labs will have point totals reduced by 5 points per working day. After one week, late labs will not be accepted.

Attendance

Students are expected to be seated in the lab at the scheduled starting time. An attendance sheet will be circulated at the beginning of the lab period. Everyone is responsible for signing this sheet. Anyone entering the lab after the scheduled starting time will be considered late and the work that they are intending to hand in will be considered late by one day. The lab instructor will be available before the lab period begins to answer questions and assist in experimental setups.

<table>
<thead>
<tr>
<th>Item</th>
<th>Points</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title Page</td>
<td>5 pts</td>
<td>The title page must follow the given format exactly to receive credit. See the examples in the syllabus and from the lab T.A.</td>
</tr>
</tbody>
</table>
| De-Briefing Questions | 20 pts | Complete all short answer questions correctly and completely. Print question responses clearly. Unreadable responses will be considered wrong. Use complete sentences and good grammar.
Graphs are sometimes included in this section. Always use a computer program to generate these plots. Additional tables of the collected data can be included with the graphs, but are not required. |
| Experimental Results | 10 pts | All data tables must be filled and contain reasonably accurate values. The values should be written clearly. The data tables must be signed by the T..A. before leaving lab. Unsigned data will receive no credit. |
| Quick Quiz | 20 pts | Correctly answer all multiple choice questions listed in the lab handout. Include these pages in the report. |
| Discussion | 45 pts | To receive maximum credit for the discussion section, each topic on the discussion points handout must be included and thoroughly explained. The discussion can be up to three pages in length. It must be typed with no greater than a 12 point font and double spaced. |
 IMPORTANT DATES *
Semester Class Begins:08/22/2016
Last day to add full-term course (without Dean’s signature):08/28/2016
Last day to withdraw from the University with a full refund:09/02/2016
Last day to drop a full-term course for a credit/refund:09/04/2016
Deadline to apply to graduate at the end of this term:09/16/2016
Last day to drop a full-term course (W grade, no refund): ...10/30/2016
Final examinations: ..12/12-12/16/2016
Commencement: ...12/17/2016

Note: For more detailed information on the above deadlines, please visit http://registrar.siu.edu/schedule/index.html.

FALL SEMESTER HOLIDAYS
Labor Day Holiday 09/05/2016
Fall Break 10/08—10/11/2016
Veterans Day Holiday 11/11/2016

WITHDRAWAL POLICY ~ Undergraduate only
Students who officially register for a session must officially withdraw from that registration in a timely manner to avoid being charged as well as receiving a failing grade for those classes. An official withdrawal must be initiated by the student, or on behalf of the student through the academic unit, and be processed by the Registrar’s office. For the proper procedures to follow when dropping courses and when withdrawing from SIU visit: http://registrar.siu.edu/students/withdraw.html

INCOMPLETE POLICY ~ Undergraduate only
An INC grade may be assigned when, for reasons beyond their control, students engaged in passing work are unable to complete all class assignments for the course. An INC must be changed to a completed grade within one full semester (undergraduates), and one full year (graduate students), from the close of the term in which the course was taken or graduation, whichever occurs first. Should the student fail to complete the remaining course requirements within the time period designated, the incomplete will be converted to a grade of F and such grade will be computed in the student’s grade point average. For more information visit: http://registrar.siu.edu/grades/incomplete.html

REPEAT POLICY
An undergraduate student may, for the purpose of raising a grade, enroll in a course for credit more than once. For students receiving a letter grade of A, B, C, D, or F, the course repetition must occur at Southern Illinois University Carbondale. Effective for courses taken Summer 2013 or later, only the most recent (last) grade will be calculated in the overall GPA and count toward hours earned. This policy will be applied to all transferrable credit in that only the last grade will be used to calculate grade point average. Only those courses taken at the same institution are considered repeats under this policy. See full policy at http://registrar.siu.edu/students/repeatclasses.html

GRADUATE POLICIES
Graduate policies often vary from Undergraduate policies. To view the applicable policies for graduate students, please refer to the graduate catalog at http://gradschool.siu.edu/about-us/grad-catalog/index.html

DISABILITY POLICY
Disability Support Services provides the required academic and programmatic support services to students with permanent and temporary disabilities. DSS provides centralized coordination and referral services. To utilize DSS services, students must contact DSS to open cases. The process involves interviews, reviews of student-supplied documentation, and completion of Disability Accommodation Agreements. http://disabilityservices.siu.edu/

PLAGIARISM
Student Conduct Code http://srr.siu.edu/student_conduct_code/

SAFETY AWARENESS FACTS AND EDUCATION
Title IX makes it clear that violence and harassment based on sex and gender is a Civil Rights offense subject to the same kinds of accountability and the same kinds of support applied to offenses against other protected categories such as race, national origin, etc. If you or someone you know has been harassed or assaulted, you can find the appropriate resources here: http://safe.siu.edu

SALUKI CARES
The purpose of Saluki Cares is to develop, facilitate and coordinate a university-wide program of care and support for students in any type of distress—physical, emotional, financial, or personal. By working closely with faculty, staff, students and their families, SIU will continue to display a culture of care and demonstrate to our students and their families that they are an important part of the community. For Information on Saluki Cares: call(618) 453-1492, email siukares@siu.edu, or http://salukicares.siu.edu/index.html

SIU’S EARLY WARNING INTERVENTION PROGRAM (EWIP)
Students enrolled in courses participating in SIU’s Early Warning Intervention Program might be contacted by University staff during a semester. More information can be found at the Core Curriculum’s Overview webpage: http://corecurriculum.siu.edu/program-overview/

EMERGENCY PROCEDURES
We ask that you become familiar with Emergency Preparedness @ SIU. Emergency response information is available on posters in buildings on campus, on the Emergency Preparedness @ SIU website, and through text and email alerts. To register for alerts visit: http://emergency.siu.edu/

INCLUSIVE EXCELLENCE
SIU contains people from all walks of life, from many different cultures and sub-cultures, and representing all strata of society, nationalities, ethnicities, lifestyles, and affiliations. Learning from and working with people who differ is an important part of education as well an essential preparation for any career. For more information visit: http://www.inclusiveexcellence.siu.edu/

LEARNING AND SUPPORT SERVICES
Help is within reach. Learning support services offers free tutoring on campus and math labs. To find more information please visit the Center for Learning and Support Services website:
 Tutoring : http://tutoring.siu.edu/
 Math Labs http://math.siu.edu/courses/course-help.php

WRITING CENTER
The Writing Center offers free tutoring services to all SIU students and faculty. To find a Center or Schedule an appointment please visit: http://write.siu.edu/

AFFIRMATIVE ACTION & EQUAL OPPORTUNITY
Our office's main focus is to ensure that the university complies with federal and state equity policies and handles reporting and investigating of discrimination cases. For more information visit: http://diversity.siu.edu/

MILITARY COMMUNITY
There are complexities of being a member of the military community and also a student. Drill schedules, calls to active duty, complications with GI Bill disbursement, and other unforeseen military and veteran related developments can complicate academic life. If you are a member of the military community and in need of accommodations please visit Veterans Services at http://veterans.siu.edu/

Additional Resources:
 ADVISEMENT: http://advisement.siu.edu/
 SIU ONLINE: http://online.siu.edu/
 SALUKINET: https://salukinet.siu.edu/
 MORRIS LIBRARY HOURS: http://www.lib.siu.edu/